Abstract

Nanotechnology has enabled the preparation of various materials for overcoming the rapid clearance of drugs, nonspecific uptake or actions, and poor tumor penetration. Based on the significance of using biomimetic substances, silk fibroin nanoparticles (SF-NPs) have been increasingly prepared for the delivery of therapeutics. Meanwhile, aggregation and low stability in the biological medium may negatively affect their efficiency. This prompted us to coat SF-NPs with polydopamine (PDA), and for efficient accumulation and increasing therapeutic efficiency against breast cancer, paclitaxel (PTX)-loaded PDA-coated SF-NPs were conjugated with targeting peptide, iRGD (iRGD-PDA-PTX-SF-NPs). The peptide impacts on the cellular uptake, cytotoxicity, tumor penetrability of NPs, and their antitumor effects were evaluated. iRGD-PDA-PTX-SF-NPs with suitable physicochemical characteristics and drug loading released PTX in a controlled manner, and efficient cellular uptake was observed. Improved pharmacological profile of PTX was revealed by increased anticancer effects in vitro and in tumor-bearing Balb/c mice, including the delayed growth of the tumor and enhanced rate of survival. The prepared NPs showed no toxic effects against the healthy tissues indicating the histocompatibility and safety of these biomimetic and long-circulating nanoplatforms. The peptide-based SF-NPs could be considered as promising biomimetic nanoformulation against breast cancer.

Details

Title
Development of a Biomimetic Peptide-Based Nanoformulation Against the Breast Cancer
Author
Hassanzadeh, Parichehr; Arbabi, Elham; Rostami, Fatemeh
Pages
430-441
Section
Articles
Publication year
2021
Publication date
2021
Publisher
Tehran University of Medical Sciences
ISSN
00446025
e-ISSN
17359694
Source type
Scholarly Journal
Language of publication
French; English
ProQuest document ID
2642345503
Copyright
© 2021. This work is published under https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.