Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We determined the spin exchanges between the Cu2+ ions in the kagomé layers of volborthite, Cu3V2O7(OH)2·2H2O, by performing the energy-mapping analysis based on DFT+U calculations, to find that the kagomé layers of Cu2+ ions are hardly spin-frustrated, and the magnetic properties of volborthite below ~75 K should be described by very weakly interacting antiferromagnetic uniform chains made up of effective S = 1/2 pseudospin units. This conclusion was verified by synthesizing single crystals of not only Cu3V2O7(OH)2·2H2O but also its deuterated analogue Cu3V2O7(OD)2·2D2O and then by investigating their magnetic susceptibilities and specific heats. Each kagomé layer consists of intertwined two-leg spin ladders with rungs of linear spin trimers. With the latter acting as S = 1/2 pseudospin units, each two-leg spin ladder behaves as a chain of S = 1/2 pseudospins. Adjacent two-leg spin ladders in each kagomé layer interact very weakly, so it is required that all nearest-neighbor spin exchange paths of every two-leg spin ladder remain antiferromagnetically coupled in all spin ladder arrangements of a kagomé layer. This constraint imposes three sets of entropy spectra with which each kagomé layer can exchange energy with the surrounding on lowering the temperature below ~1.5 K and on raising the external magnetic field B. We discovered that the specific heat anomalies of volborthite observed below ~1.5 K at B = 0 are suppressed by raising the magnetic field B to ~4.2 T, that a new specific heat anomaly occurs when B is increased above ~5.5 T, and that the imposed three sets of entropy spectra are responsible for the field-dependence of the specific heat anomalies.

Details

Title
Absence of Spin Frustration in the Kagomé Layers of Cu2+ Ions in Volborthite Cu3V2O7(OH)2·2H2O and Observation of the Suppression and Re-Entrance of Specific Heat Anomalies in Volborthite under an External Magnetic Field
Author
Myung-Hwan Whangbo 1   VIAFID ORCID Logo  ; Koo, Hyun-Joo 2 ; Brücher, Eva 3 ; Puphal, Pascal 3   VIAFID ORCID Logo  ; Kremer, Reinhard K 3   VIAFID ORCID Logo 

 Department of Chemistry, North Carolina State University, Raleigh, NC 27695, USA; Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Korea; [email protected] 
 Department of Chemistry and Research Institute for Basic Sciences, Kyung Hee University, Seoul 02447, Korea; [email protected] 
 Max Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany; [email protected] (E.B.); [email protected] (P.P.) 
First page
24
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
24103896
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642352325
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.