Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

River sediments often contain potentially harmful pollutants such as metals. Much research has been conducted to identify factors involved in sediment concentrations of metals. While most metal pollution studies focus on smaller scales, it has been shown that basin-scale parameters are powerful predictors of river water quality. The present study focused on basin-scale factors of metal concentrations in river sediments. The study was performed on the contiguous USA using Random Forest (R.F.) to analyze the importance of different factors of the metal pollution potential of river sediments and evaluate the possibility of assessing this potential from basin characteristics. Results indicated that the most important factors belonged to the groups Geology, Dams, and Land cover. Rock characteristics (contents of K2O, CaO, and SiO2) and reservoir drainage area were strong factors. Vegetation indices were more important than land cover types. The response of different metals to basin-scale factors varied greatly. The R.F. models performed well with prediction errors of 16.5% to 28.1%, showing that basin-scale parameters hold sufficient information for predicting potential metal concentrations. The results contribute to research and policymaking dependent on understanding large-scale factors of metal pollution.

Details

Title
Ranking of Basin-Scale Factors Affecting Metal Concentrations in River Sediment
Author
Lotz, Tom 1   VIAFID ORCID Logo  ; Opp, Christian 2   VIAFID ORCID Logo 

 School of Computer Engineering, Jinling Institute of Technology, Hongjing Avenue 99, Nanjing 211169, China; Jiangsu Key Laboratory of Data Science & Smart Software, Jinling Institute of Technology, Hongjing Avenue 99, Nanjing 211169, China 
 Faculty of Geography, Philipps-Universität Marburg, Biegenstraße 10, 35032 Marburg, Germany; [email protected] 
First page
2805
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642352337
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.