Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

RNA-based drugs are an attractive approach for personalized treatment of cancer and other diseases. This review focuses on two related classes of short non-coding RNA: microRNAs (miRNAs) and small interfering RNAs (siRNAs). miRNAs are endogenous short RNAs that bind multiple messenger RNAs (mRNAs) and prevent the production of their gene-products, whereas siRNAs are exogenous RNAs that target a single and specific mRNA for degradation. This review describes the development, challenges, and clinical successes of short RNA-based drugs. We provide several examples of how these RNA drugs are designed, chemically modified and delivered for treatment of different cancer types, cardiovascular disease, and rare genetic disorders. We highlight the similarities, differences, and considerations to maximize the treatment efficacy of miRNA-based vs. siRNA-based drugs.

Abstract

Traditional targeted therapeutic agents have relied on small synthetic molecules or large proteins, such as monoclonal antibodies. These agents leave a lot of therapeutic targets undruggable because of the lack or inaccessibility of active sites and/or pockets in their three-dimensional structure that can be chemically engaged. RNA presents an attractive, transformative opportunity to reach any genetic target with therapeutic intent. RNA therapeutic design is amenable to modularity and tunability and is based on a computational blueprint presented by the genetic code. Here, we will focus on short non-coding RNAs (sncRNAs) as a promising therapeutic modality because of their potency and versatility. We review recent progress towards clinical application of small interfering RNAs (siRNAs) for single-target therapy and microRNA (miRNA) activity modulators for multi-target therapy. siRNAs derive their potency from the fact that the underlying RNA interference (RNAi) mechanism is catalytic and reliant on post-transcriptional mRNA degradation. Therapeutic siRNAs can be designed against virtually any mRNA sequence in the transcriptome and specifically target a disease-causing mRNA variant. Two main classes of microRNA activity modulators exist to increase (miRNA mimics) or decrease (anti-miRNA inhibitors) the function of a specific microRNA. Since a single microRNA regulates the expression of multiple target genes, a miRNA activity modulator can have a more profound effect on global gene expression and protein output than siRNAs do. Both types of sncRNA-based drugs have been investigated in clinical trials and some siRNAs have already been granted FDA approval for the treatment of genetic, cardiometabolic, and infectious diseases. Here, we detail clinical results using siRNA and miRNA therapeutics and present an outlook for the potential of these sncRNAs in medicine.

Details

Title
Clinical Applications of Short Non-Coding RNA-Based Therapies in the Era of Precision Medicine
Author
Smith, Ellen S 1   VIAFID ORCID Logo  ; Whitty, Eric 2 ; Yoo, Byunghee 2 ; Moore, Anna 3 ; Sempere, Lorenzo F 3   VIAFID ORCID Logo  ; Medarova, Zdravka 4 

 Department of Biochemistry, Northeastern University, Boston, MA 02115, USA; [email protected] 
 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; [email protected] (E.W.); [email protected] (B.Y.) 
 Precision Health Program, Michigan State University, East Lansing, MI 48824, USA; [email protected]; Department of Radiology, College of Human Medicine, Michigan State University, East Lansing, MI 48824, USA 
 Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02129, USA; [email protected] (E.W.); [email protected] (B.Y.); Transcode Therapeutics, Inc., Boston, MA 02109, USA 
First page
1588
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642356832
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.