Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Cataract is one of the major causes of blindness in the world. Its early detection and treatment could greatly reduce the risk of deterioration and blindness. Instruments commonly used to detect cataracts are slit lamps and fundus cameras, which are highly expensive and require domain knowledge. Thus, the problem is that the lack of professional ophthalmologists could result in the delay of cataract detection, where medical treatment is inevitable. Therefore, this study aimed to design a convolutional neural network (CNN) with digital camera images (CNNDCI) system to detect cataracts efficiently and effectively. The designed CNNDCI system can perform the cataract identification process accurately in a user-friendly manner using smartphones to collect digital images. In addition, the existing numerical results provided by the literature were used to demonstrate the performance of the proposed CNNDCI system for cataract detection. Numerical results revealed that the designed CNNDCI system could identify cataracts effectively with satisfying accuracy. Thus, this study concluded that the presented CNNDCI architecture is a feasible and promising alternative for cataract detection.

Details

Title
The Use of Convolutional Neural Networks and Digital Camera Images in Cataract Detection
Author
Chi-Ju, Lai  VIAFID ORCID Logo  ; Ping-Feng Pai  VIAFID ORCID Logo  ; Marvin, Marvin; Hsiao-Han, Hung; Si-Han, Wang; Din-Nan, Chen
First page
887
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20799292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642368206
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.