Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

We map single energy CT (SECT) scans to synthetic dual-energy CT (synth-DECT) material density iodine (MDI) scans using deep learning (DL) and demonstrate their value for liver segmentation. A 2D pix2pix (P2P) network was trained on 100 abdominal DECT scans to infer synth-DECT MDI scans from SECT scans. The source and target domain were paired with DECT monochromatic 70 keV and MDI scans. The trained P2P algorithm then transformed 140 public SECT scans to synth-DECT scans. We split 131 scans into 60% train, 20% tune, and 20% held-out test to train four existing liver segmentation frameworks. The remaining nine low-dose SECT scans tested system generalization. Segmentation accuracy was measured with the dice coefficient (DSC). The DSC per slice was computed to identify sources of error. With synth-DECT (and SECT) scans, an average DSC score of 0.93±0.06 (0.89±0.01) and 0.89±0.01 (0.81±0.02) was achieved on the held-out and generalization test sets. Synth-DECT-trained systems required less data to perform as well as SECT-trained systems. Low DSC scores were primarily observed around the scan margin or due to non-liver tissue or distortions within ground-truth annotations. In general, training with synth-DECT scans resulted in improved segmentation performance with less data.

Details

Title
Deep Learning and Domain-Specific Knowledge to Segment the Liver from Synthetic Dual Energy CT Iodine Scans
Author
Mahmood, Usman 1 ; Bates, David D B 2 ; Erdi, Yusuf E 1 ; Mannelli, Lorenzo 3 ; Corrias, Giuseppe 4 ; Kanan, Christopher 5 

 Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; [email protected] 
 Department of Radiology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; [email protected] 
 IRCCS SYNLAB SDN S.p.A., 80143 Naples, Italy; [email protected] 
 Department of Radiology, University of Cagliari, 09124 Cagliari, Italy; [email protected] 
 Chester F. Carlson Center for Imaging Science, Rochester Institute of Technology, Rochester, NY 14623, USA; [email protected] 
First page
672
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754418
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642377732
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.