Full Text

Turn on search term navigation

© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Electro-wetting-on-dielectric (EWOD) enables the manipulation of droplets on a two-dimensional surface, which provides a versatile technique for digital microfluidics at a micro- or nano-scale. However, the deficiency of the dispensing precision has long limited its applications in micro total analysis systems (μ-TAS) where the accuracy of assays is largely determined by the volume control of the reagent dosing. This paper proposes optimum electrode designs and carries out characterization experiments to demonstrate the reproducibility of on-chip droplet generation with no extra external apparatus. The coefficient variation of the volumes of consecutively dispensed droplets from a non-refilling reservoir can be limited to below 0.3%, indicating the validity of the new electrode structure in practical applications.

Details

Title
Precise Droplet Dispensing in Digital Microfluidics with Dumbbell-Shaped Electrodes
Author
Wang, Wei 1 

 MOE Key Laboratory of Material Physics and Chemistry under Extraordinary Conditions, School of Physical Science and Technology, Northwestern Polytechnical University, Xi’an 710129, China; [email protected]; State Key Laboratory of ASIC and Systems, Fudan University, Shanghai 200433, China 
First page
484
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
2072666X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642440662
Copyright
© 2022 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.