Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This study aimed to investigate the effect of BaF2 on the radiation-shielding ability of lead telluride glass. A physical radioactive source was used to estimate the mass attenuation coefficient (μm) of the 60TeO2-20PbO-(20-x)ZnO-xBaF2 glass system (where x = 1,2,3,5,6,7,9 mol%). We tested the μm values at seven energies (0.059, 0.081, 0.122, 0.356, 0.662, 1.173, 1.332 MeV). To determine the accuracy of the obtained results, we compared the experimental data with the data calculated using the XCOM software. The experimental values obtained for the selected lead telluride glasses at different concentrations of BaF2 are in good agreement with the results of XCOM at all energies. The addition of BaF2 increased the μm value of the sample. At the same time, the half-value layer (HVL), mean free path (MFP), effective atomic number (Zeff), and fast neutron removal cross-section (RCS) of the glass were studied. With the increase in the BaF2 content, the HVL value and MFP value of the glass decreased, and the Zeff value and RCS increased, indicating that the addition of BaF2 enhanced the radiation-shielding performance of the glass.

Details

Title
Study on Radiation Shielding Properties of New Barium-Doped Zinc Tellurite Glass
Author
Yin, Shiyu 1   VIAFID ORCID Logo  ; Wang, Hao 1 ; Li, Aifeng 2 ; Ma, Zhongjian 3 ; He, Yintong 4 

 School of Mechanical and Materials Engineering, North China University of Technology, Beijing 100144, China; [email protected] 
 College of Information Science and Enginfeering, Shandong Agricultural University, Taian 271018, China 
 Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China; [email protected] 
 Innovation & Research Institute of HIRING Technology, Beijing 100074, China; [email protected] 
First page
2117
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961944
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642441226
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.