Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Waterway traffic monitoring is an important content in waterway traffic management. Taking into account that the number of monitored water areas is growing and that waterway traffic management capabilities are insufficient in the current situation in China, this paper investigates the location optimization of the vessel traffic service (VTS) radar station. During the research process, radar attenuation and environmental occlusion, as well as variable coverage radius and multiple covering are all considered. In terms of the radar attenuation phenomenon in the propagation process and obstacles such as mountains and islands in the real world, judgment and evaluation methods in a three-dimensional space are proposed. Moreover, a bi-objective mathematical model is then developed, as well as a modified adaptive strategy particle swarm optimization algorithm. Finally, a numerical example and a case are given to verify the effectiveness of the proposed methods, model, and algorithm. The results show the methods, model, and algorithm proposed in this paper can solve the model efficiently and provide a method to optimize the VTS radar station location in practice.

Details

Title
Location Optimization of VTS Radar Stations Considering Environmental Occlusion and Radar Attenuation
Author
Huang, Chuan 1 ; Lu, Jing 1 ; Li-Qian, Sun 2 

 College of Transportation Engineering, Dalian Maritime University, Dalian 116026, China; [email protected] 
 China Communications Information Technology Group Co., Ltd., Beijing 100011, China; [email protected] 
First page
183
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22209964
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642445012
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.