Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Intranasal delivery is an alternative administration route to deliver levodopa (L-Dopa) to the brain. This drug delivery route offers high drug permeability across the nasal epithelium and rapid absorption into the central nervous system (CNS) while bypassing first-pass metabolism. In this study, we developed a library of polymeric nanocarrier systems for L-Dopa utilising poly(lactic-co-glycolic acid) (PLGA) and chitosan. A total of three PLGA nanoparticles formulations (P1, P2 and P3) were prepared using a modified water-in-oil-in-water (W/O/W) solvent evaporation technique, while four formulations of chitosan nanoparticles (C1, C2, C3 and C4) were prepared by ionic gelation method with sodium tripolyphosphate (TPP) as a cross-linking agent. Upon characterising nanocarriers developed, it was discovered that C2 demonstrated the best results with regard to droplet size (553 ± 52 nm), polydispersity index (0.522), zeta potential (+46.2 ± 2.3 mV), and encapsulation efficiency (82.38% ± 1.63). Transmission electron microscopy (TEM) and scanning electron microscopy (SEM) further corroborated the particle size analysis highlighting that C2 displayed uniform particle size with spherical morphology. Additionally, X-ray diffraction analysis (XRD) revealed that C2 was in an amorphous state while Fourier transform infrared (FTIR) analysis showed that there were no chemical interactions that might change the chemical structure of L-Dopa within the polymeric nanoparticle matrix. Lastly, an in-vivo intranasal study in male Wistar rats showed that the absorption of L-Dopa when formulated as chitosan nanoparticles was significantly enhanced (p < 0.05) by approximately two-fold compared to unmodified L-Dopa. Therefore, this work illustrates that formulating L-Dopa into chitosan nanoparticles for intranasal delivery is a potentially viable formulation strategy to improve the bioavailability of the drug for the treatment of Parkinson’s disease.

Details

Title
Design and Development of Levodopa Loaded Polymeric Nanoparticles for Intranasal Delivery
Author
Ahmad, Mohd Zulhelmy 1 ; Akmal Hidyat Bin Sabri 2 ; Qonita Kurnia Anjani 2   VIAFID ORCID Logo  ; Domínguez-Robles, Juan 2   VIAFID ORCID Logo  ; Normala Abdul Latip 3 ; Khuriah Abdul Hamid 1 

 Department of Pharmaceutics, Faculty of Pharmacy, Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Malaysia; [email protected] 
 School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK; [email protected] (A.H.B.S.); [email protected] (Q.K.A.); [email protected] (J.D.-R.) 
 Atta-ur-Rahman Institute for Natural Product Discovery (AuRINS), Universiti Teknologi MARA Cawangan Selangor, Puncak Alam 42300, Malaysia; [email protected] 
First page
370
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248247
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642586288
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.