Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Recently, forest management faces new challenges resulting from increasing temperatures and drought occurrences. For sustainable, site-specific management strategies, the availability of up to date soil information is crucial. Proximal soil sensing techniques are a promising approach for rapid and inexpensive collection of data, and could facilitate the provision of the necessary information. This study evaluates the potential of visual and near-infrared spectroscopy (vis-NIRS) for estimating soil parameters relevant for humus mapping in Saxon forests. Therefore, soil samples from the organic layer are included. So far there is little knowledge about the applicability of vis-NIRS in the humus layer of forests. We investigate the spectral behaviour of samples from organic (Oh) and mineral (0–5 cm, Ah) horizons, pointing out differences in the occurring absorption features. Further, we identify and assess the accuracy of selected soil properties based on vis-NIRS for forest sites, compare the outcome of different regression methods, investigate the implications for forest soils due to the presence and different composition of the humus layer and organic horizons and interpret the results regarding their usefulness for soil mapping and monitoring purposes. For this, we used retained humus soil samples of forests from Saxony. Regression models were built with Partial Least Squares Regression, Support Vector Machine and Cubist. Investigated properties were carbon (C) and nitrogen (N) content, C/N ratio, pH value, cation exchange capacity (CEC) and base saturation (BS) due to their importance for assessing humus conditions in forests. In organic Oh horizons, prediction results for C and N content achieved R2 values between 0.44 and 0.58, with corresponding RPIQ ranging from 1.58 to 2.06 depending on the used algorithm. Estimations of C/N ratio were more precise with R2 = 0.65 and RMSE = 2.16. Best results were reported for pH value, with R2 = 0.90 and RMSE = 0.20. Regarding BS, the best model accuracy was R2 = 0.71, with RMSE = 13.97. In mineral topsoil, C and N content models achieved higher values of R2 = 0.59 to 0.72, with RPIQ values between 2.22 and 2.54. However, prediction accuracy was lower for C/N ratio (R2 = 0.50, RMSE = 3.52) and pH values (R2 = 0.62, RMSE = 0.29). Models for CEC achieved R2 = 0.65, with RPIQ = 2.81. In general, prediction precision varied dependent on the used algorithm, without showing clear tendencies. Classification into pH classes was exemplified since this offers a new perspective for humus mapping on forest soils. Balanced accuracy for the defined classes ranged from 0.50 to 0.87. We show that vis-NIR spectroscopy is suitable for assessing humus conditions in Saxon forests (Germany), in particular not only for mineral horizons but also for organic Oh horizons.

Details

Title
Estimating Forest Soil Properties for Humus Assessment—Is Vis-NIR the Way to Go?
Author
Thomas, Felix 1   VIAFID ORCID Logo  ; Petzold, Rainer 2 ; Landmark, Solveig 1   VIAFID ORCID Logo  ; Mollenhauer, Hannes 1 ; Becker, Carina 2 ; Werban, Ulrike 1   VIAFID ORCID Logo 

 Department Monitoring & Exploration Technologies, Helmholtz Centre for Environmental Research—UFZ, Permoser Straße 15, 04318 Leipzig, Germany; [email protected] (S.L.); [email protected] (H.M.); [email protected] (U.W.) 
 Public Enterprise Sachsenforst, Unit Site Survey, Soil Monitoring and Laboratory, Bonnewitzer Straße 34, 01796 Pirna, Germany; [email protected] (R.P.); [email protected] (C.B.) 
First page
1368
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2642644964
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.