It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
PCNA is a central orchestrator of cellular processes linked to DNA metabolism. It is a binding platform for a plethora of proteins and coordinates and regulates the activity of several pathways. The outer side of PCNA comprises most of the known interacting and regulatory surfaces, whereas the residues at the inner side constitute the sliding surface facing the DNA double helix. Here, by investigating the L154A mutation found at the inner side, we show that the inner surface mediates protein interactions essential for genome stability. It forms part of the binding site of Rad18, a key regulator of DNA damage tolerance, and is required for PCNA sumoylation which prevents unscheduled recombination during replication. In addition, the L154 residue is necessary for stable complex formation between PCNA and the replicative DNA polymerase δ. Hence, its absence increases the mutation burden of yeast cells due to faulty replication. In summary, the essential role of the L154 of PCNA in guarding and maintaining stable replication and promoting DNA damage tolerance reveals a new connection between these processes and assigns a new coordinating function to the central channel of PCNA.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Szeged, Eotvos Loránd Research Network, The Institute of Genetics, Biological Research Centre, Szeged, Hungary (GRID:grid.481815.1)