Abstract

Drug discovery for diseases such as Parkinson’s disease are impeded by the lack of screenable cellular phenotypes. We present an unbiased phenotypic profiling platform that combines automated cell culture, high-content imaging, Cell Painting, and deep learning. We applied this platform to primary fibroblasts from 91 Parkinson’s disease patients and matched healthy controls, creating the largest publicly available Cell Painting image dataset to date at 48 terabytes. We use fixed weights from a convolutional deep neural network trained on ImageNet to generate deep embeddings from each image and train machine learning models to detect morphological disease phenotypes. Our platform’s robustness and sensitivity allow the detection of individual-specific variation with high fidelity across batches and plate layouts. Lastly, our models confidently separate LRRK2 and sporadic Parkinson’s disease lines from healthy controls (receiver operating characteristic area under curve 0.79 (0.08 standard deviation)), supporting the capacity of this platform for complex disease modeling and drug screening applications.

By coupling robotic cell culture systems with artificial intelligence–powered image analysis, Schiff et al. identify previously unseen characteristics of Parkinson’s disease in patient skin cells that distinguish them from healthy controls.

Details

Title
Integrating deep learning and unbiased automated high-content screening to identify complex disease signatures in human fibroblasts
Author
Schiff, Lauren 1 ; Migliori Bianca 2 ; Chen, Ye 1 ; Carter, Deidre 2 ; Bonilla Caitlyn 1 ; Hall, Jenna 2   VIAFID ORCID Logo  ; Fan Minjie 1 ; Tam, Edmund 2 ; Ahadi, Sara 1 ; Brodie, Fischbacher 2   VIAFID ORCID Logo  ; Geraschenko Anton 1 ; Hunter, Christopher J 2 ; Venugopalan Subhashini 1   VIAFID ORCID Logo  ; DesMarteau Sean 2 ; Arunachalam, Narayanaswamy 1 ; Jacob, Selwyn 2 ; Armstrong, Zan 1   VIAFID ORCID Logo  ; Ferrarotto, Peter 2 ; Williams, Brian 1   VIAFID ORCID Logo  ; Buckley-Herd, Geoff 2 ; Hazard, Jon 1 ; Goldberg, Jordan 2 ; Coram, Marc 1   VIAFID ORCID Logo  ; Reid, Otto 2 ; Baltz, Edward A 1 ; Andres-Martin, Laura 2 ; Pritchard Orion 1 ; Duren-Lubanski Alyssa 2 ; Daigavane Ameya 1   VIAFID ORCID Logo  ; Reggio, Kathryn 2 ; Nelson, Phillip C 1 ; Frumkin, Michael 1 ; Solomon, Susan L 2 ; Bauer, Lauren 2 ; Aiyar, Raeka S 2 ; Schwarzbach, Elizabeth 2 ; Noggle, Scott A 2 ; Monsma, Frederick J, Jr 2 ; Paull, Daniel 2   VIAFID ORCID Logo  ; Berndl Marc 1   VIAFID ORCID Logo  ; Yang, Samuel J 1   VIAFID ORCID Logo  ; Johannesson Bjarki 2   VIAFID ORCID Logo 

 Google Research, Mountain View, USA (GRID:grid.420451.6) (ISNI:0000 0004 0635 6729) 
 The New York Stem Cell Foundation Research Institute, New York, USA (GRID:grid.430819.7) (ISNI:0000 0004 5906 3313) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2643138552
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.