It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Previous work has shown that inorganic As localizes in rice bran whereas DMA localizes in the endosperm, but less is known about co-localization of As and S species and how they are affected by growing conditions. We used high-resolution synchrotron X-ray fluorescence imaging to image As and S species in rice grain from plants grown to maturity in soil (field and pot) and hydroponically (DMA or arsenite dosed) at field-relevant As concentrations. In hydroponics, arsenite was localized in the ovular vascular trace (OVT) and the bran while DMA permeated the endosperm and was absent from the OVT in all grains analyzed, and As species had no affect on S species. In pot studies, soil amended with Si-rich rice husk with higher DMA shifted grain As into the endosperm for both japonica and indica ecotypes. In field-grown rice from low-As soil, As localized in the OVT as arsenite glutathione, arsenite, and DMA. Results support a circumferential model of grain filling for arsenite and DMA and show Si-rich soil amendments alter grain As localization, potentially lessening risk to rice consumers.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 University of Delaware, Department of Plant and Soil Sciences, Newark, USA (GRID:grid.33489.35) (ISNI:0000 0001 0454 4791)