Full Text

Turn on search term navigation

Copyright © 2022 Yaohui Xu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

Acid Orange 7 (AO7) is one of the most common azo dyes; however, its strong azo bond makes them difficult to biologically degrade. We sought to degrade AO7 dye using CeO2 as a promising alternative photocatalyst. CeO2 powders were synthesized with alternative monoethanolamine (MEA), diethanolamine (DEA), and triethanolamine (TEA) as a precipitant by solvothermal process combined calcination in air. Compared to the oxygen storage capability of Blank-CeO2 (0.186 mmol O2/g), that of MEA-CeO2 synthesized in the presence of MEA as a precipitant increased by 21.0%, while that of DEA-CeO2 and TEA-CeO2 synthesized in the presence of DEA and TEA as precipitants were decreased. Importantly, such MEA-CeO2 exhibited the highest photocatalytic activity than Blank-, DEA-, and TEA-CeO2 in degradation of AO7 under simulated sunlight illumination, and the removal rate of AO7 by MEA-CeO2 could reach 98.3% within 100 min.

Details

Title
Synthesis and Oxygen Storage Capability of CeO2 Powders for Enhanced Photocatalytic Degradation of Acid Orange 7
Author
Xu, Yaohui 1   VIAFID ORCID Logo  ; Deng, Chi 1 ; Dong, Changxue 1 ; Wang, Qin 1 ; Gao, Nunan 2 

 Laboratory for Functional Materials, School of Electronics and Materials Engineering, Leshan Normal University, Leshan, Sichuan 614004, China 
 College of Polymer Science and Engineering, Sichuan University, Chengdu, Sichuan 610065, China 
Editor
Abderrazek Douhal
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
1110662X
e-ISSN
1687529X
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2643821899
Copyright
Copyright © 2022 Yaohui Xu et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/