Abstract

Chronic gastrointestinal (GI) diseases are the most common diseases in captive common marmosets (Callithrix jacchus). Despite standardized housing, diet and husbandry, a recently described gastrointestinal syndrome characterized by duodenal ulcers and strictures was observed in a subset of marmosets sourced from the New England Primate Research Center. As changes in the gut microbiome have been associated with GI diseases, the gut microbiome of 52 healthy, non-stricture marmosets (153 samples) were compared to the gut microbiome of 21 captive marmosets diagnosed with a duodenal ulcer/stricture (57 samples). No significant changes were observed using alpha diversity metrics, and while the community structure was significantly different when comparing beta diversity between healthy and stricture cases, the results were inconclusive due to differences observed in the dispersion of both datasets. Differences in the abundance of individual taxa using ANCOM, as stricture-associated dysbiosis was characterized by Anaerobiospirillum loss and Clostridium perfringens increases. To identify microbial and serum biomarkers that could help classify stricture cases, we developed models using machine learning algorithms (random forest, classification and regression trees, support vector machines and k-nearest neighbors) to classify microbiome, serum chemistry or complete blood count (CBC) data. Random forest (RF) models were the most accurate models and correctly classified strictures using either 9 ASVs (amplicon sequence variants), 4 serum chemistry tests or 6 CBC tests. Based on the RF model and ANCOM results, C. perfringens was identified as a potential causative agent associated with the development of strictures. Clostridium perfringens was also isolated by microbiological culture in 4 of 9 duodenum samples from marmosets with histologically confirmed strictures. Due to the enrichment of C. perfringens in situ, we analyzed frozen duodenal tissues using both 16S microbiome profiling and RNAseq. Microbiome analysis of the duodenal tissues of 29 marmosets from the MIT colony confirmed an increased abundance of Clostridium in stricture cases. Comparison of the duodenal gene expression from stricture and non-stricture marmosets found enrichment of genes associated with intestinal absorption, and lipid metabolism, localization, and transport in stricture cases. Using machine learning, we identified increased abundance of C. perfringens, as a potential causative agent of GI disease and intestinal strictures in marmosets.

Details

Title
Alterations in common marmoset gut microbiome associated with duodenal strictures
Author
Sheh Alexander 1 ; Artim, Stephen C 2 ; Burns, Monika A 1 ; Molina-Mora, Jose Arturo 3 ; Lee, Mary Anne 4 ; Dzink-Fox JoAnn 1 ; Sureshkumar, Muthupalani 1 ; Fox, James G 1 

 Massachusetts Institute of Technology, Division of Comparative Medicine, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786) 
 Massachusetts Institute of Technology, Division of Comparative Medicine, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786); Merck, Merck Research Laboratories, South San Francisco, USA (GRID:grid.417993.1) (ISNI:0000 0001 2260 0793) 
 Universidad de Costa Rica, Centro de Investigación en Enfermedades Tropicales (CIET), San José, Costa Rica (GRID:grid.412889.e) (ISNI:0000 0004 1937 0706) 
 Massachusetts Institute of Technology, Division of Comparative Medicine, Cambridge, USA (GRID:grid.116068.8) (ISNI:0000 0001 2341 2786); Wellesley College, Department of Biological Sciences, Wellesley, USA (GRID:grid.268091.4) (ISNI:0000 0004 1936 9561) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2644235959
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.