It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Crop growth monitoring and yield estimate information can be obtained via appropriate metrics such as the leaf area index (LAI) and biomass. Such information is crucial for guiding agricultural production, ensuring food security, and maintaining sustainable agricultural development. Traditional methods of field measurement and monitoring typically have low efficiency and can only give limited untimely information. Alternatively, methods based on remote sensing technologies are fast, objective, and nondestructive. Indeed, remote sensing data assimilation and crop growth modeling represent an important trend in crop growth monitoring and yield estimation. In this study, we assimilate the leaf area index retrieved from Sentinel-2 remote sensing data for crop growth model of the simple algorithm for yield estimation (SAFY) in wheat. The SP-UCI optimization algorithm is used for fine-tuning for several SAFY parameters, namely the emergence date (D0), the effective light energy utilization rate (ELUE), and the senescence temperature threshold (STT) which is indicative of biological aging. These three sensitive parameters are set in order to attain the global minimum of an error function between the SAFY model predicted values and the LAI inversion values. This assimilation of remote sensing data into the crop growth model facilitates the LAI, biomass, and yield estimation. The estimation results were validated using data collected from 48 experimental plots during 2014 and 2015. For the 2014 data, the results showed coefficients of determination (R2) of the LAI, biomass and yield of 0.73, 0.83 and 0.49, respectively, with corresponding root-mean-squared error (RMSE) values of 0.72, 1.13 t/ha and 1.14 t/ha, respectively. For the 2015 data, the estimated R2 values of the LAI, biomass, and yield were 0.700, 0.85, and 0.61, respectively, with respective RMSE values of 0.83, 1.22 t/ha, and 1.39 t/ha, respectively. The estimated values were found to be in good agreement with the measured ones. This shows high applicability of the proposed data assimilation scheme in crop monitoring and yield estimation. As well, this scheme provides a reference for the assimilation of remote sensing data into crop growth models for regional crop monitoring and yield estimation.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Henan Polytechnic University, School of Surveying and Land Information Engineering, Jiaozuo, China (GRID:grid.412097.9) (ISNI:0000 0000 8645 6375)
2 Zhangzhou Institute of Surverying and Mapping, Zhangzhou, China (GRID:grid.412097.9)