It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Vortical and shear flows are common in turbomachinery. Multi-hole pressure probes are used in turbomachinery flows in order to provide robust and accurate measurements of both pressure and velocity components. In this study, two different miniature five-hole probes are designed and fabricated, both with a cobra shape. The probe tip was 1.45 mm and it was maintained in that size for the length of the cobra shape formation, providing very close proximity to the solid boundaries and reduced flow blockage. The difference among the probes corresponded to the head geometry, as the one probe was formed with a pyramid tip shape, while the other was maintained with a flat shape. The calibration process was carried out in an open-circuit suction wind tunnel for the range of ±32⁰ in yaw and pitch direction. The results showed that the pyramid probe exhibits a high flow angle spatial sensitivity and a reliable measurement range of ±28⁰ in yaw and pitch direction. The flat probe provided unexpected well angle sensitivity and reliable measurements data despite the fact that it is of a very simple form. The pyramid probe showed superior performance. In particular, the pyramid probe offers 12.5% wider operating range. In order to prove the effectiveness of the pyramid probe, measurements were obtained in a jet in cross flow. In order to evaluate the performance of the probe, further, a surface fit model was employed to produce ideal calibration coefficients. These were used to redefine the magnitude of the velocities in the measured flow domain. The accuracy in measurements was assessed, comparing the velocities produced by the two variants of pressure coefficients. The results indicate that the pyramid probe operates reliably in a very large range of constantly changing velocity vector, which occurs in jet in cross flow.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer