Full text

Turn on search term navigation

© 2022 Sauriasari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Oxidant species is reported as a major determinant in the pathophysiology of diabetic kidney disease. However, reactive oxygen species (ROS) formation in the initial phase and progressing phase of diabetic kidney disease remains unclear. Therefore, we conducted this study to find out what ROS and their modified product are associated with eGFR in type 2 diabetes mellitus (T2DM) patients. A cross-sectional study was performed on 227 T2DM patients. The study subjects were divided into three groups based on their eGFR stage (Group 1, eGFR > 89 ml/min/1.73 m2; Group 2, eGFR = 60–89 ml/min/1.73 m2; and Group 3, eGFR < 60 ml/min/1.73 m2). Enzyme-linked immunosorbent assay (ELISA) was used to measure serum oxLDL/β2GPI complex and urinary 8-iso-PGF2α, while ferrous ion oxidation xylenol orange method 1 (FOX-1) was used to measure urinary hydrogen peroxide (H2O2). H2O2 significantly decreased across the groups, whereas OxLDL/β2GPI complex increased, but not significant, and there was no trend for 8-iso-PGF2α. Consistently, in the total study population, only H2O2 showed correlation with eGFR (r = 0.161, p = 0.015). Multiple linear regression analysis showed that significant factors for increased eGFR were H2O2, diastolic blood pressure, and female. Whereas increased systolic blood pressure and age were significant factors affecting the decrease of eGFR. We also found that urinary H2O2 had correlation with serum oxLDL/β2GPI complex in total population. This finding could lead to further research on urinary H2O2 for early detection and research on novel therapies of diabetic kidney disease.

Details

Title
Role of urinary H2O2, 8-iso-PGF2α, and serum oxLDL/β2GP1 complex in the diabetic kidney disease
Author
Sauriasari, Rani; Zulfa, Afina Irsyania; Sekar, Andisyah Putri; Nuriza Ulul Azmi; Xian Wen Tan; Matsuura, Eiji
First page
e0263113
Section
Research Article
Publication year
2022
Publication date
Apr 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2647157777
Copyright
© 2022 Sauriasari et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.