It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Loading small molecular weight hydrophilic drugs into polymeric carriers is a challenging task. Metformin hydrochloride (MET) is a highly soluble oral antidiabetic drug of small size and high cationic charge. Hydrophobic ion pairing (HIP) is an approach for reversible modulation of solubility and hydrophilicity of water-soluble drugs via complexation with oppositely charged molecules. Herein, we prepared MET ion pairs and carefully studied and characterized MET interaction with different ligands, with the aim of increasing MET lipophilicity and loading efficiency. HIP was successful using three hydrophilic anionic ligands; sodium dodecyl sulphate (SDS) Carbopol (CB) and tannic acid (TA). Electrostatic interaction and hydrogen bonding drove the complexation per spectroscopic and thermal studies. Complexation efficiency depended on ligand type and charge ratio. While complexes had varying interaction strengths, the excessive stability of TA/MET resulted in unfavorable poor MET dissociation. Notably, HIP imparted a 450 and tenfold lipophilicity increase for SDS/MET and CB/MET, respectively. The latter showed favorable controlled, yet complete release of MET at pH 6.8 and was loaded into alginate beads. Complex bulkiness and decreased lipophilicity resulted in a dramatic 88% increase of MET loading, demonstrating the success of HIP as a simple, efficient and applicable approach for modulating drug’s properties.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Assiut University, Department of Pharmaceutics, Faculty of Pharmacy, Assiut, Egypt (GRID:grid.252487.e) (ISNI:0000 0000 8632 679X)
2 Assiut University, Department of Pharmaceutics, Faculty of Pharmacy, Assiut, Egypt (GRID:grid.252487.e) (ISNI:0000 0000 8632 679X); Assiut University, Institute for Drug Development and Innovation Research, Assiut, Egypt (GRID:grid.252487.e) (ISNI:0000 0000 8632 679X)