It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Pump-probe experiments have suggested the possibility to control electronic correlations by driving infrared-active (IR-active) phonons with resonant midinfrared laser pulses. In this work we study two possible microscopic nonlinear electron-phonon interactions behind these observations, namely coupling of the squared lattice displacement either to the electronic density or to the double occupancy. We investigate whether photon-phonon coupling to quantized light in an optical cavity enables similar control over electronic correlations. We first show that inside a dark cavity electronic interactions increase, ruling out the possibility that Tc in superconductors can be enhanced via effectively decreased electron-electron repulsion through nonlinear electron-phonon coupling in a cavity. We further find that upon driving the cavity, electronic interactions decrease. Two different regimes emerge: (i) a strong coupling regime where the phonons show a delayed response at a time proportional to the inverse coupling strength, and (ii) an ultra-strong coupling regime where the response is immediate when driving the phonon polaritons resonantly. We further identify a distinctive feature in the electronic spectral function when electrons couple to phonon polaritons involving an IR-active phonon mode, namely the splitting of the shake-off band into three bands. This could potentially be observed by angle-resolved photoemission spectroscopy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details



1 Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science , Luruper Chaussee 149, 22761 Hamburg, Germany
2 Institut für Theorie der Statistischen Physik, RWTH Aachen University and JARA-Fundamentals of Future Information Technology , 52056 Aachen, Germany; Max Planck Institute for the Structure and Dynamics of Matter, Center for Free-Electron Laser Science , Luruper Chaussee 149, 22761 Hamburg, Germany