It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Spinal cord injury (SCI) may cause structural alterations in brain due to pathophysiological processes, but the effects of SCI treatment on brain have rarely been reported. Here, voxel-based morphometry is employed to investigate the effects of SCI and neurotrophin-3 (NT3) coupled chitosan-induced regeneration on brain and spinal cord structures in rhesus monkeys. Possible association between brain and spinal cord structural alterations is explored. The pain sensitivity and stepping ability of animals are collected to evaluate sensorimotor functional alterations. Compared with SCI, the unique effects of NT3 treatment on brain structure appear in extensive regions which involved in motor control and neuropathic pain, such as right visual cortex, superior parietal lobule, left superior frontal gyrus (SFG), middle frontal gyrus, inferior frontal gyrus, insula, secondary somatosensory cortex, anterior cingulate cortex, and bilateral caudate nucleus. Particularly, the structure of insula is significantly correlated with the pain sensitivity. Regenerative treatment also shows a protective effect on spinal cord structure. The associations between brain and spinal cord structural alterations are observed in right primary somatosensory cortex, SFG, and other regions. These results help further elucidate secondary effects on brain of SCI and provide a basis for evaluating the effects of NT3 treatment on brain structure.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Beihang University, Beijing Key Laboratory for Biomaterials and Neural Regeneration, Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beijing, China (GRID:grid.64939.31) (ISNI:0000 0000 9999 1211)
2 China Rehabilitation Science Institute, Institute of Rehabilitation Engineering, Beijing, China (GRID:grid.64939.31); Capital Medical University, School of Rehabilitation, Beijing, China (GRID:grid.24696.3f) (ISNI:0000 0004 0369 153X)
3 The First Medical Center of PLA General Hospital, Department of Orthopedics, Beijing, China (GRID:grid.414252.4) (ISNI:0000 0004 1761 8894)