It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The use of computational fluid dynamics in continuous operation industries have become more prominent in recent times. Proposed system improvements through geometric changes or control strategies can be evaluated within a relatively shorter timeframe. Applications for discrete element methods (DEMs) in real life simulations, however, require validated material-calibration-methods. In this paper, the V-model methodology in combination with direct and bulk calibration approaches were followed to determine material model parameters, to simulate real life occurrences. For the bulk calibration approach a test rig with a containment hopper, deflection plate and settling zone was used. Screened material drains from the hopper, interacts with the deflection plate, and then settles at the material angle of repose. A high-speed camera captured material interaction with the rig, where footage was used during simulation validation. The direct measuring approach was used to determine particle size, shape and density, while confirming friction and restitution coefficients determined in the bulk calibration method. The test was repeated and validated for various geometrical changes. Three categories of validation were established, namely particle speed assessment, -trajectory assessment and -plate interaction assessment. In conclusion, the combination of direct and bulk calibration approaches was significant in calibrating the required material model parameters.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer





