Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Traditional natural river sand is used as a fine aggregate for concrete, but due to the severe environmental situation in recent years, many places have asked for a ban or restriction on the extraction of river sand. This has resulted in an increasing demand for concrete using machine-made sand instead of natural sand. The estimation and prediction of the compressive strength of concrete is very important in civil engineering applications. In this investigation, a Box–Behnken test model was established to analyze the effect of stone powder (SP), pulverized fuel ash (PFA), and silica fume (SF) contents on the compressive strength of manufactured sand concrete using response surface methodology (RSM). A prediction model for the compressive strength of manufactured sand concrete was developed using multiple regression analysis with SP, PFA, and SF content as factors and compressive strength as the response value. In addition, the interaction of stone powder (SP), pulverized fuel ash (PFA), and silica fume (SF) content was analyzed according to the response surface and contour. The investigation showed that for single factors, SP had the greatest effect on the compressive strength of the manufactured sand concrete, with PFA having the second greatest effect, and SF the least; for the interactions, SP and PFA had the most significant effect, and the interaction between SP and SF and PFA and SF had the same effect on the compressive strength.

Details

Title
Research on Compressive Strength of Manufactured Sand Concrete Based on Response Surface Methodology (RSM)
Author
Ma, Hui 1 ; Sun, Zhenjiao 2   VIAFID ORCID Logo  ; Ma, Guanguo 1 

 College of Energy and Mining Engineering, Shandong University of Science and Technology, Qingdao 266590, China; [email protected] 
 College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590, China; [email protected] 
First page
3506
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2648986380
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.