Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

Challenges persist in diagnosing pulmonary neuroendocrine tumors. Our case study shows that deep learning combined with convolutional neural networks has the potential to assist in the diagnosis of pulmonary neuroendocrine tumors from digital whole-slide images.

Abstract

The histological distinction of lung neuroendocrine carcinoma, including small cell lung carcinoma (SCLC), large cell neuroendocrine carcinoma (LCNEC) and atypical carcinoid (AC), can be challenging in some cases, while bearing prognostic and therapeutic significance. To assist pathologists with the differentiation of histologic subtyping, we applied a deep learning classifier equipped with a convolutional neural network (CNN) to recognize lung neuroendocrine neoplasms. Slides of primary lung SCLC, LCNEC and AC were obtained from the Laboratory of Clinical and Experimental Pathology (University Hospital Nice, France). Three thoracic pathologists blindly established gold standard diagnoses. The HALO-AI module (Indica Labs, UK) trained with 18,752 image tiles extracted from 60 slides (SCLC = 20, LCNEC = 20, AC = 20 cases) was then tested on 90 slides (SCLC = 26, LCNEC = 22, AC = 13 and combined SCLC with LCNEC = 4 cases; NSCLC = 25 cases) by F1-score and accuracy. A HALO-AI correct area distribution (AD) cutoff of 50% or more was required to credit the CNN with the correct diagnosis. The tumor maps were false colored and displayed side by side to original hematoxylin and eosin slides with superimposed pathologist annotations. The trained HALO-AI yielded a mean F1-score of 0.99 (95% CI, 0.939–0.999) on the testing set. Our CNN model, providing further larger validation, has the potential to work side by side with the pathologist to accurately differentiate between the different lung neuroendocrine carcinoma in challenging cases.

Details

Title
Deep Learning Facilitates Distinguishing Histologic Subtypes of Pulmonary Neuroendocrine Tumors on Digital Whole-Slide Images
Author
Ilié, Marius 1   VIAFID ORCID Logo  ; Benzaquen, Jonathan 2   VIAFID ORCID Logo  ; Tourniaire, Paul 3   VIAFID ORCID Logo  ; Heeke, Simon 4   VIAFID ORCID Logo  ; Ayache, Nicholas 3 ; Delingette, Hervé 3 ; Long-Mira, Elodie 1 ; Lassalle, Sandra 1 ; Hamila, Marame 5 ; Fayada, Julien 6 ; Otto, Josiane 7 ; Cohen, Charlotte 8 ; Gomez-Caro, Abel 8   VIAFID ORCID Logo  ; Berthet, Jean-Philippe 9 ; Charles-Hugo Marquette 2   VIAFID ORCID Logo  ; Hofman, Véronique 1 ; Bontoux, Christophe 1   VIAFID ORCID Logo  ; Hofman, Paul 1   VIAFID ORCID Logo 

 Laboratory of Clinical and Experimental Pathology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France; [email protected] (E.L.-M.); [email protected] (S.L.); [email protected] (M.H.); [email protected] (V.H.); [email protected] (C.B.); Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France; [email protected]; Team 4, Institute of Research on Cancer and Aging, CNRS INSERM, Centre Antoine Lacassagne, Université Côte d’Azur, 06100 Nice, France; [email protected] (J.B.); [email protected] (J.-P.B.); [email protected] (C.-H.M.) 
 Team 4, Institute of Research on Cancer and Aging, CNRS INSERM, Centre Antoine Lacassagne, Université Côte d’Azur, 06100 Nice, France; [email protected] (J.B.); [email protected] (J.-P.B.); [email protected] (C.-H.M.); Department of Pulmonary Medicine and Oncology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France 
 Epione Team, Inria, Université Côte d’Azur, 06220 Sophia Antipolis, France; [email protected] (P.T.); [email protected] (N.A.); [email protected] (H.D.) 
 Department of Thoracic/Head and Neck Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; [email protected] 
 Laboratory of Clinical and Experimental Pathology, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France; [email protected] (E.L.-M.); [email protected] (S.L.); [email protected] (M.H.); [email protected] (V.H.); [email protected] (C.B.) 
 Hospital-Related Biobank (BB-0033-00025), Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France; [email protected] 
 Department of Oncology, Antoine Lacassagne Center, Université Côte d’Azur, 06100 Nice, France; [email protected] 
 Department of Thoracic Surgery, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France; [email protected] (C.C.); [email protected] (A.G.-C.) 
 Team 4, Institute of Research on Cancer and Aging, CNRS INSERM, Centre Antoine Lacassagne, Université Côte d’Azur, 06100 Nice, France; [email protected] (J.B.); [email protected] (J.-P.B.); [email protected] (C.-H.M.); Department of Thoracic Surgery, Centre Hospitalier Universitaire de Nice, FHU OncoAge, Université Côte d’Azur, 06000 Nice, France; [email protected] (C.C.); [email protected] (A.G.-C.) 
First page
1740
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20726694
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649007216
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.