Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Soil spectroscopy in the visible-to-near infrared (VNIR) and mid-infrared (MIR) is a cost-effective method to determine the soil organic carbon content (SOC) based on predictive spectral models calibrated to analytical-determined SOC reference data. The degree to which uncertainty in reference data and spectral measurements contributes to the estimated accuracy of VNIR and MIR predictions, however, is rarely addressed and remains unclear, in particular for current handheld MIR spectrometers. We thus evaluated the reproducibility of both the spectral reflectance measurements with portable VNIR and MIR spectrometers and the analytical dry combustion SOC reference method, with the aim to assess how varying spectral inputs and reference values impact the calibration and validation of predictive VNIR and MIR models. Soil reflectance spectra and SOC were measured in triplicate, the latter by different laboratories, for a set of 75 finely ground soil samples covering a wide range of parent materials and SOC contents. Predictive partial least-squares regression (PLSR) models were evaluated in a repeated, nested cross-validation approach with systematically varied spectral inputs and reference data, respectively. We found that SOC predictions from both VNIR and MIR spectra were equally highly reproducible on average and similar to the dry combustion method, but MIR spectra were more robust to calibration sample variation. The contributions of spectral variation (ΔRMSE < 0.4 g·kg−1) and reference SOC uncertainty (ΔRMSE < 0.3 g·kg−1) to spectral modeling errors were small compared to the difference between the VNIR and MIR spectral ranges (ΔRMSE ~1.4 g·kg−1 in favor of MIR). For reference SOC, uncertainty was limited to the case of biased reference data appearing in either the calibration or validation. Given better predictive accuracy, comparable spectral reproducibility and greater robustness against calibration sample selection, the portable MIR spectrometer was considered overall superior to the VNIR instrument for SOC analysis. Our results further indicate that random errors in SOC reference values are effectively compensated for during model calibration, while biased SOC calibration data propagates errors into model predictions. Reference data uncertainty is thus more likely to negatively impact the estimated validation accuracy in soil spectroscopy studies where archived data, e.g., from soil spectral libraries, are used for model building, but it should be negligible otherwise.

Details

Title
Accuracy and Reproducibility of Laboratory Diffuse Reflectance Measurements with Portable VNIR and MIR Spectrometers for Predictive Soil Organic Carbon Modeling
Author
Semella, Sebastian 1 ; Hutengs, Christopher 2 ; Seidel, Michael 3 ; Mathias, Ulrich 1   VIAFID ORCID Logo  ; Schneider, Birgit 4 ; Ortner, Malte 5 ; Thiele-Bruhn, Sören 5   VIAFID ORCID Logo  ; Ludwig, Bernard 6   VIAFID ORCID Logo  ; Vohland, Michael 2   VIAFID ORCID Logo 

 Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, 04103 Leipzig, Germany; [email protected] (S.S.); [email protected] (M.S.); [email protected] (M.U.) 
 Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, 04103 Leipzig, Germany; [email protected] (S.S.); [email protected] (M.S.); [email protected] (M.U.); Remote Sensing Centre for Earth System Research, Leipzig University, 04103 Leipzig, Germany; German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany 
 Geoinformatics and Remote Sensing, Institute for Geography, Leipzig University, 04103 Leipzig, Germany; [email protected] (S.S.); [email protected] (M.S.); [email protected] (M.U.); Remote Sensing Centre for Earth System Research, Leipzig University, 04103 Leipzig, Germany 
 Physical Geography, Institute for Geography, Leipzig University, 04103 Leipzig, Germany; [email protected] 
 Soil Science, Faculty of Spatial and Environmental Sciences, University of Trier, 54286 Trier, Germany; [email protected] (M.O.); [email protected] (S.T.-B.) 
 Department of Environmental Chemistry, University of Kassel, 37213 Witzenhausen, Germany; [email protected] 
First page
2749
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649016883
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.