Abstract

Single-cell RNA-Sequencing has the potential to provide deep biological insights by revealing complex regulatory interactions across diverse cell phenotypes at single-cell resolution. However, current single-cell gene regulatory network inference methods produce a single regulatory network per input dataset, limiting their capability to uncover complex regulatory relationships across related cell phenotypes. We present SimiC, a single-cell gene regulatory inference framework that overcomes this limitation by jointly inferring distinct, but related, gene regulatory dynamics per phenotype. We show that SimiC uncovers key regulatory dynamics missed by previously proposed methods across a range of systems, both model and non-model alike. In particular, SimiC was able to uncover CAR T cell dynamics after tumor recognition and key regulatory patterns on a regenerating liver, and was able to implicate glial cells in the generation of distinct behavioral states in honeybees. SimiC hence establishes a new approach to quantitating regulatory architectures between distinct cellular phenotypes, with far-reaching implications for systems biology.

SimiC, a single-cell gene regulatory inference framework is presented that can infer multiple gene regulatory networks across related cell phenotypes, unraveling complex regulatory dynamics.

Details

Title
SimiC enables the inference of complex gene regulatory dynamics across cell phenotypes
Author
Peng Jianhao 1   VIAFID ORCID Logo  ; Serrano, Guillermo 2   VIAFID ORCID Logo  ; Traniello, Ian M 3 ; Calleja-Cervantes, Maria E 4   VIAFID ORCID Logo  ; Chembazhi, Ullas V 5   VIAFID ORCID Logo  ; Bangru Sushant 5   VIAFID ORCID Logo  ; Ezponda Teresa 6   VIAFID ORCID Logo  ; Rodriguez-Madoz, Juan Roberto 6   VIAFID ORCID Logo  ; Auinash, Kalsotra 7   VIAFID ORCID Logo  ; Prosper Felipe 8   VIAFID ORCID Logo  ; Ochoa Idoia 9   VIAFID ORCID Logo  ; Hernaez Mikel 10   VIAFID ORCID Logo 

 University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991) 
 CIMA University of Navarra, IdiSNA, Computational Biology Program, Pamplona, Spain (GRID:grid.5924.a) (ISNI:0000000419370271) 
 University of Illinois at Urbana-Champaign, Carl R. Woese Institute for Genomic Biology, Urbana, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991); University of Illinois at Urbana-Champaign, Neuroscience Program, Urbana, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991) 
 CIMA University of Navarra, IdiSNA, Computational Biology Program, Pamplona, Spain (GRID:grid.5924.a) (ISNI:0000000419370271); CIMA University of Navarra, IdiSNA, Hemato-Oncology Program, Pamplona, Spain (GRID:grid.5924.a) (ISNI:0000000419370271) 
 University of Illinois at Urbana, Department of Biochemistry, Urbana, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991) 
 CIMA University of Navarra, IdiSNA, Hemato-Oncology Program, Pamplona, Spain (GRID:grid.5924.a) (ISNI:0000000419370271); Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain (GRID:grid.510933.d) (ISNI:0000 0004 8339 0058) 
 University of Illinois at Urbana-Champaign, Carl R. Woese Institute for Genomic Biology, Urbana, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991); University of Illinois at Urbana, Department of Biochemistry, Urbana, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991); Cancer Center@Illinois, Urbana, USA (GRID:grid.35403.31) 
 CIMA University of Navarra, IdiSNA, Hemato-Oncology Program, Pamplona, Spain (GRID:grid.5924.a) (ISNI:0000000419370271); Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain (GRID:grid.510933.d) (ISNI:0000 0004 8339 0058); Hematology and Cell Therapy, Clinica Universidad de Navarra, Pamplona, Spain (GRID:grid.411730.0) (ISNI:0000 0001 2191 685X) 
 University of Illinois at Urbana-Champaign, Department of Electrical and Computer Engineering, Urbana, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991); University of Navarra, Department of Electrical Engineering (TECNUN), San Sebastian, Spain (GRID:grid.5924.a) (ISNI:0000000419370271); Universidad de Navarra, Data Science and Artificial Intelligence Institute (DATAI), Pamplona, Spain (GRID:grid.5924.a) (ISNI:0000000419370271) 
10  CIMA University of Navarra, IdiSNA, Computational Biology Program, Pamplona, Spain (GRID:grid.5924.a) (ISNI:0000000419370271); University of Illinois at Urbana-Champaign, Carl R. Woese Institute for Genomic Biology, Urbana, USA (GRID:grid.35403.31) (ISNI:0000 0004 1936 9991); Centro de Investigación Biomédica en Red de Cáncer, CIBERONC, Madrid, Spain (GRID:grid.510933.d) (ISNI:0000 0004 8339 0058); Universidad de Navarra, Data Science and Artificial Intelligence Institute (DATAI), Pamplona, Spain (GRID:grid.5924.a) (ISNI:0000000419370271) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
23993642
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649433780
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.