Abstract

The COVID-19 pandemic repeatedly overwhelms healthcare systems capacity and forced the development and implementation of triage guidelines in ICU for scarce resources (e.g. mechanical ventilation). These guidelines were often based on known risk factors for COVID-19. It is proposed that image data, specifically bedside computed X-ray (CXR), provide additional predictive information on mortality following mechanical ventilation that can be incorporated in the guidelines. Deep transfer learning was used to extract convolutional features from a systematically collected, multi-institutional dataset of COVID-19 ICU patients. A model predicting outcome of mechanical ventilation (remission or mortality) was trained on the extracted features and compared to a model based on known, aggregated risk factors. The model reached a 0.702 area under the curve (95% CI 0.707-0.694) at predicting mechanical ventilation outcome from pre-intubation CXRs, higher than the risk factor model. Combining imaging data and risk factors increased model performance to 0.743 AUC (95% CI 0.746-0.732). Additionally, a post-hoc analysis showed an increase performance on high-quality than low-quality CXRs, suggesting that using only high-quality images would result in an even stronger model.

Details

Title
Deep learning of chest X-rays can predict mechanical ventilation outcome in ICU-admitted COVID-19 patients
Author
Gourdeau, Daniel 1 ; Potvin, Olivier 2 ; Biem, Jason Henry 3 ; Cloutier, Florence 4 ; Lyna, Abrougui 5 ; Archambault, Patrick 6 ; Chartrand-Lefebvre, Carl 7 ; Dieumegarde Louis 2 ; Gagné, Christian 8 ; Gagnon, Louis 3 ; Giguère Raphaelle 5 ; Hains Alexandre 8 ; Le, Huy 9 ; Lemieux, Simon 10 ; Lévesque Marie-Hélène 10 ; Nepveu, Simon 7 ; Rosenbloom, Lorne 9 ; Tang, An 7 ; Yang, Issac 9 ; Duchesne Nathalie 11 ; Duchesne, Simon 12 

 CERVO Brain Research Center, Québec, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390); Université Laval, Québec, Physics Department, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390) 
 CERVO Brain Research Center, Québec, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390) 
 Université Laval, Québec, Department of Radiology and Nuclear Medicine, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390) 
 Université Laval, Québec, Department of Family and Emergency Medicine, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390); Centre de recherche intégrée pour un système apprenant en santé et services sociaux, Lévis, Québec, Canada (GRID:grid.23856.3a) 
 Centre de recherche intégrée pour un système apprenant en santé et services sociaux, Lévis, Québec, Canada (GRID:grid.23856.3a) 
 Université Laval, Québec, Department of Family and Emergency Medicine, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390); Centre de recherche intégrée pour un système apprenant en santé et services sociaux, Lévis, Québec, Canada (GRID:grid.23856.3a); Centre de recherche sur les soins et les services de première ligne de l’Université Laval, Québec, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390) 
 Centre hospitalier de l’Université de Montréal, Montréal, Canada (GRID:grid.410559.c) (ISNI:0000 0001 0743 2111) 
 Université Laval, Electrical and Computer Engineering Department, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390) 
 Jewish General Hospital, Montréal, Canada (GRID:grid.414980.0) (ISNI:0000 0000 9401 2774); McGill University, Department of Diagnostic Radiology, Montréal, Canada (GRID:grid.14709.3b) (ISNI:0000 0004 1936 8649) 
10  Université Laval, Québec, Department of Radiology and Nuclear Medicine, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390); Institut universitaire de cardiologie et de pneumologie de Québec, Québec, Canada (GRID:grid.421142.0) (ISNI:0000 0000 8521 1798) 
11  Université Laval, Québec, Department of Radiology and Nuclear Medicine, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390); Public Health Directory, Centre intégré universitaire santé et services sociaux de la Capitale Nationale, Québec, Québec, Canada (GRID:grid.23856.3a) 
12  CERVO Brain Research Center, Québec, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390); Université Laval, Québec, Department of Radiology and Nuclear Medicine, Québec, Canada (GRID:grid.23856.3a) (ISNI:0000 0004 1936 8390) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2649849587
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.