It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Mitigation of electromagnetic inference (EMI) is currently a challenge for scientists and designers in order to cope with electromagnetic compatibility (EMC) compliance in switching mode power supply (SMPS) and ensure the reliability of the whole system. Standard filtering techniques: passive and active ones present some insufficiency in terms of performance at high frequencies (HF) because analog components would no longer be controllable and this is mainly due to their parasitic elements. So developing EMI digital filters is very interesting, especially with the embedment of a machine control system on a field programmable gate array (FPGA) chip. In this paper, we present a design of an active digital EMI filter (ADF) to be integrated in a drive train system of an electric vehicle (EV). Hardware design as well as FPGA implementation issues have been presented to prove the efficiency of the developed digital filtering structure.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer