It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In this study, energetic behaviors of polyvinylidene fluoride (PVDF)-coated zirconium (Zr) powders were investigated using thermogravimetric analyzer-differential scanning calorimetry (TGA-DSC). PVDF-coated Zr powder had 1.5 times higher heat flow than ZrO2-passivated Zr powder. PVDF-coated Zr powder had a Zr-F compound formed on its surface by its strong chemical bond. This compound acted as an oxidation-protecting layer, providing an efficient combustion path to inner pure Zr particle while thermal oxidation was progressing at the same time. PVDF coating layers also made thermal reaction start at a lower temperature than ZrO2-passivated Zr powder. It was obtained that the surface PVDF coating layer evaporated at approximately 673 K, but the surface oxide layer fully reacted at approximately 923 K by DSC analysis. Hence, Zr powders showed enhanced energetic properties by the PVDF-coated process.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer