Abstract

In this study, the evolution of solidification texture during LPBF of Ti-free grade 300 maraging steel, and its effect on texture development during subsequent post-fabrication heat treatments was characterized using Electron Backscatter Diffraction (EBSD). It was found that in the as-fabricated state, no texture was observed in the room temperature martensitic phase. However, the reconstructed parent austenite phase displayed a Cube texture with a minor fraction of Rotated Goss texture. During subsequent aging treatments involving two different routes, namely direct aging of the as-fabricated samples, and conventional solution treatment + aging of the as-fabricated samples, significant changes in the texture components of parent austenite were observed, whereas no changes in texture were observed in the room temperature martensitic phase. During direct aging, it was found that with an increase in the aging temperature up to 520 °C, the texture components of the parent austenite changed from Cube/Rotated Goss to Brass, whereas during the conventional solution treatment and aging cycle, interestingly a change in texture component to rotated copper was observed. The transitions in texture components have been discussed using the concepts of recrystallization and twinning in austenite during annealing and/or aging, and strain energy release maximization (SERM) theory. Furthermore, the importance of these preferred orientations on the mechanical properties was quantified using transformation potential diagrams.

Details

Title
Texture evolution during processing and post-processing of maraging steel fabricated by laser powder bed fusion
Author
Kannan, Rangasayee 1 ; Nandwana, Peeyush 2 

 Oak Ridge National Laboratory, Manufacturing Science Division, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659) 
 Oak Ridge National Laboratory, Materials Science and Technology Division, Oak Ridge, USA (GRID:grid.135519.a) (ISNI:0000 0004 0446 2659) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2650970746
Copyright
© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.