It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
Field cancerization is the process in which a population of normal or pre-malignant cells is affected by oncogenic alterations leading to progressive molecular changes that drive malignant transformation. Aberrant DNA methylation has been implicated in early cancer development in non-small cell lung cancer (NSCLC); however, studies on its role in field cancerization (FC) are limited. This study aims to identify FC-specific methylation patterns that could distinguish between pre-malignant lesions and tumor tissues in NSCLC.
Methods
We enrolled 52 patients with resectable NSCLC and collected resected tumor (TUM), tumor-adjacent (ADJ) and tumor-distant normal (DIS) tissue samples, among whom 36 qualified for subsequent analyses. Methylation levels were profiled by bisulfite sequencing using a custom lung-cancer methylation panel.
Results
ADJ and DIS samples demonstrated similar methylation profiles, which were distinct from distinct from that of TUM. Comparison of TUM and DIS profiles led to identification of 1740 tumor-specific differential methylated regions (DMRs), including 1675 hypermethylated and 65 hypomethylated (adjusted P < 0.05). Six of the top 10 tumor-specific hypermethylated regions were associated with cancer development. We then compared the TUM, ADJ, and DIS to further identify the progressively aggravating aberrant methylations during cancer initiation and early development. A total of 332 DMRs were identified, including a predominant proportion of 312 regions showing stepwise increase in methylation levels as the sample drew nearer to the tumor (i.e. DIS < ADJ < TUM) and 20 regions showing a stepwise decrease pattern. Gene set enrichment analysis (GSEA) for KEGG and GO terms consistently suggested enrichment of DMRs located in transcription factor genes, suggesting a central role of epigenetic regulation of transcription factors in FC and tumorigenesis.
Conclusion
We revealed distinct methylation patterns between pre-malignant lesions and malignant tumors, suggesting the essential role of DNA methylation as an early step in pre-malignant field defects. Moreover, our study also identified differentially methylated genes, especially transcription factors, that could potentially be used as markers for lung cancer screening and for mechanistic studies of FC and early cancer development.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer