It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Natural killer (NK) cells are innate immune cells that recognize malignant cells through a wide array of germline-encoded receptors. Triggering of activating receptors results in cytotoxicity and broad immune system activation. The former is achieved through release of cytotoxic granules and presentation of death receptor ligands, while the latter is mediated by inflammatory cytokines, such as interferon-γ and tumor necrosis factor α. Early success with ex vivo activation of NK cells and adoptive transfer suggest they are a safe therapeutic with promising responses in advanced hematologic malignancies. In particular, adoptive NK cell therapies can serve as a ‘bridge’ to potentially curative allogeneic stem cell transplantation. In addition, strategies are being developed that expand large numbers of cells from limited starting material and mature NK cells from precursors. Together, these make ‘off-the-shelf’ NK cells possible to treat a wide range of cancers. Research efforts have focused on creating a range of tools that increase targeting of therapeutic NK cells toward cancer—from therapeutic antibodies that drive antibody-dependent cellular cytotoxicity, to chimeric antigen receptors. As these novel therapies start to show promise in clinical trials, the field is rapidly moving toward addressing other challenges that limit NK cell therapeutics and the goal to treat solid tumors. This review describes the state of therapeutic NK cell targeting of tumors; discusses the challenges that need to be addressed before NK cells can be applied as a wide-ranging treatment for cancer; and points to some of the innovations that are being developed to surmount these challenges. Suppressive cells in the tumor microenvironment pose a direct threat to therapeutic NK cells, through presentation of inhibitory ligands and secretion of suppressive cytokines and metabolites. The nutrient- and oxygen-starved conditions under which NK cells must function necessitate an understanding of therapeutic NK cell metabolism that is still emerging. Prior to these challenges, NK cells must find their way into and persist in the tumor itself. Finally, the desirability of a ‘single-shot’ NK cell treatment and the problems and benefits of a short-lived rejection-prone NK cellular product are discussed.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer