It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Background
The development of basal stem rot (BSR) disease in oil palm is associated with lignin during vegetative growth and salicylic acid (SA) biosynthesis. The increase in the lignin content, SA accumulation, growth, and root biomass could indicate the resistance of oil palm seedlings to BSR disease. Therefore, although there are many studies on the interactions between the Ganoderma boninense and oil palm, research on evaluation of physiological processes, biochemistry, and molecules occurring during early internal symptoms of BSR in roots of oil palm (Elaeis guineensis Jacq.) are essential.
Results
Ganoderma boninense inoculation indicated that C01, C02, and C05 seedlings were susceptible, while the other three seedlings, C03, C07, and C08, were resistant based on Ganoderma Disease Index (GDI). Infection by G. boninense in the most susceptible seedlings C05 reduced fresh weight of roots (FW) by 9.0%, and lignin content by 10.9%. The most resistant seedlings C08 were reduced by only 8.4%, and 0.2% regarding their fresh weight and lignin content, respectively. BSR disease induced SA accumulation in the most susceptible C08 and decreased peroxidase (PRX) enzyme (EC 1.11.1.7) activities in root tissues of oil palm seedlings except C07 and C08 where PRX activities remained high in the 4 months after planting. Infection with G. boninense also increased glutathione S-transferase U19-like (EgGSTU19) gene expression in the root tissues of susceptible seedlings, while laccase-24 (EgLCC24) gene expression was associated with resistance against BSR disease. Based on the relative expression of twelve genes, two genes are categorized as receptors (EgWAKL5, EgMIK1), two genes as biosynthesis signal transduction compound (EgOPR5, EgACO1), five genes as defense responses (EgROMT, EgSOT12, EgLCC24, EgGLT3, EgGSTU19), and one gene as trans-resveratrol di-O-methyltransferase-like (EgRNaseIII) predicted related to BSR infection. While two other genes remain unknown (EgUnk1, EgUnk2).
Conclusions
Ganoderma infection-induced SA accumulation and lignification in resistant accessions promote the seedlings root biomass. Oil palm seedlings have a synergistic physical, biochemical, and molecular defense mechanism to the BSR disease. The utilization of nucleotide-based molecular markers using EgLCC24 gene is able to detect resistant oil palm seedlings to G. boninense.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer