It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
In the era of Noisy Intermediate-Scale Quantum (NISQ) computers it is crucial to design quantum algorithms which do not require many qubits or deep circuits. Unfortunately, most of the well-known quantum algorithms are too demanding to be run on currently available quantum devices. Moreover, even the state-of-the-art algorithms developed for the NISQ era often suffer from high space complexity requirements for particular problem classes. In this paper, we show that it is possible to greatly reduce the number of qubits needed for the Travelling Salesman Problem (TSP), a paradigmatic optimization task, at the cost of having deeper variational circuits. While the focus is on this particular problem, we claim that the approach can be generalized for other problems where the standard bit-encoding is highly inefficient. Finally, we also propose encoding schemes which smoothly interpolate between the qubit-efficient and the circuit depth-efficient models. All the proposed encodings have the same volume up to polylogarithmic factors and remain efficient to implement within the Quantum Approximate Optimization Algorithm framework.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details


1 Institute of Theoretical and Applied Informatics, Polish Academy of Sciences, Gliwice, Poland (GRID:grid.460371.7) (ISNI:0000 0001 2218 8647)
2 Wigner Research Centre for Physics, Budapest, Hungary (GRID:grid.419766.b) (ISNI:0000 0004 1759 8344); BME-MTA Lendület Quantum Information Theory Research Group, Budapest, Hungary (GRID:grid.419766.b)