Abstract

In teaching environments, student facial expressions are a clue to the traditional classroom teacher in gauging students' level of concentration in the course. With the rapid development of information technology, e-learning will take off because students can learn anytime, anywhere and anytime they feel comfortable. And this gives the possibility of self-learning. Analyzing student concentration can help improve the learning process. When the student is working alone on a computer in an e-learning environment, this task is particularly challenging to accomplish. Due to the distance between the teacher and the students, face-to-face communication is not possible in an e-learning environment. It is proposed in this article to use transfer learning and data augmentation techniques to determine the concentration level of learners from their facial expressions in real time. We found that expressed emotions correlate with students' concentration, and we designed three distinct levels of concentration (highly concentrated, nominally concentrated, and not at all concentrated).

Details

Title
Determine the Level of Concentration of Students in Real Time from their Facial Expressions
Author
Bouhlal Meriem; Habib Benlahmar; Mohamed Amine Naji; Elfilali Sanaa; Wijdane, Kaiss
Publication year
2022
Publication date
2022
Publisher
Science and Information (SAI) Organization Limited
ISSN
2158107X
e-ISSN
21565570
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2652930970
Copyright
© 2022. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.