Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The aerodynamic complexity of the underbody surfaces of conventional road vehicles is a matter of fact. Currently available literature is focused mainly on very simple Ahmed-body geometries as opposed to realistic car shapes, due to their complexity and computational cost. We attempted to understand the flow behaviour around different realistic conventional road car geometries, and we provide an extensive evaluation of the aerodynamic loads generated. The key findings of this article could potentially set a precedent and be useful within the automotive industry’s investigations on drag-reduction mechanisms or sources of downforce generation. The novelty of the work resides in the realistic approach employed for the geometries and in the investigation of barely researched aerodynamic elements, such as front diffusers, which might pave the way for further research studies. A baseline flat-underfloor design, a 7 venturi diffuser-equipped setup, a venturi diffuser with diagonal skirts, and the same venturi diffuser with frontal slot-diffusers are the main configurations we studied. The numerical predictions evaluated using RANS computational fluid dynamics (CFD) simulations deal with the aerodynamic coefficients. The configuration that produced the highest downforce coefficient was the one composed of the 7 venturi diffuser equipped with diagonal sealing skirts, achieving a CL value of −0.887, which represents an increase of around 1780% with regard to the baseline model. That achievement and the gains in higher vertical loads also entail a compromise with an increase in the overall air resistance. The performance achieved with diffusers in the generation of downforce is, as opposed to the one obtained with conventional wings, a cleaner alternative, by avoiding wake disturbances and downwash phenomena.

Details

Title
A Numerical Aerodynamic Analysis on the Effect of Rear Underbody Diffusers on Road Cars
Author
Guerrero, Alex  VIAFID ORCID Logo  ; Castilla, Robert  VIAFID ORCID Logo  ; Eid, Giorgio
First page
3763
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2652956291
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.