Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Three-dimensional computational fluid dynamics (CFD) simulations were performed in the anastomotic region of the Fontan route between the venae cava and pulmonary arteries to investigate the risk of thrombosis due to blood stasis in the Fontan circulation. The finite volume method based on the time-averaged continuity and Navier–Stokes equations combined with the k-ω SST turbulent model was used in the CFD simulations. Low shear rate (SR) and SR on the wall (WSR) of <10 s−1 were used as markers to assess blood stasis as a cause of blood coagulation. Simulated blood flow velocity and both SR and WSR were reduced in the right atrium (RA) as the cavity of a flow channel in the atriopulmonary connection (APC) Fontan model, whereas the values increased in the total cavopulmonary connection (TCPC) Fontan model, which has no cavity. The volume of SR <10 s−1 and wall surface area of WSR <10 s−1 were, respectively, 4.6–261.8 cm3 and 1.2–38.3 cm2 in the APC Fontan model, and 0.1–0.3 cm3 and 0.1–0.6 cm2 in the TCPC Fontan model. The SR and WSR increased in the APC model with a normal-sized RA and the TCPC model as the flow rate of blood from the inferior vena cava increased with exercise; however, the SR and WSR in the RA decreased in the APC model with a dilated RA owing to the development of a recirculating flow. These findings suggest that the APC Fontan has a higher risk of thrombosis due to blood stasis than the TCPC Fontan and a higher RA dilation is associated with a higher risk of thrombosis from a fluid mechanics perspective.

Details

Title
Blood Flow Simulation to Determine the Risk of Thrombosis in the Fontan Circulation: Comparison between Atriopulmonary and Total Cavopulmonary Connections
Author
Tsubota, Ken-ichi 1   VIAFID ORCID Logo  ; Sonobe, Hidetaka 2 ; Sughimoto, Koichi 3 ; Liu, Hao 1 

 Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan; [email protected] (K.S.); [email protected] (H.L.) 
 Graduate School of Science and Engineering, Chiba University, Chiba 263-8522, Japan; [email protected] 
 Graduate School of Engineering, Chiba University, Chiba 263-8522, Japan; [email protected] (K.S.); [email protected] (H.L.); Department of Cardiovascular Surgery, Chiba Kaihin Municipal Hospital, Chiba 261-0012, Japan 
First page
138
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23115521
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2652967831
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.