Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The wave glider is an ocean-wave-propelled autonomous marine vehicle with unique dual-body architecture, which can converse the energy obtained from the ocean wave into the forward thrust. In this paper, the dynamic models of the submerged glider based on dynamic characteristics of tandem hydrofoils and the surface float were separately established. The pitching angles of the hydrofoils and the submerged glider and the angle of attack between hydrofoils and relative current were considered for dynamic models and hydrodynamic coefficients. The translational hydrodynamic coefficient term for high-angle-of-attack passive motion of the submerged glider was calculated from static test simulations by using Computational Fluid Dynamics (CFD). Moreover, the rotational damping coefficients and added mass coefficients varying with the pitching angle of hydrofoils were analyzed by the simulation of the vertical planar motion mechanism (VPMM) tests. Furthermore, the numerical simulation of longitudinal motion with the computed hydrodynamic coefficients was performed, and the simulation results were compared with the sea trial data. The analysis was performed, and conclusions were drawn, which would provide a theoretical reference for the design of the wave glider.

Details

Title
Dynamics Modeling and Hydrodynamic Coefficients Identification of the Wave Glider
Author
Sun, Xiujun 1 ; Sun, Chenyu 2 ; Hongqiang Sang 2 ; Li, Can 3 

 Physical Oceanography Laboratory, Ocean University of China, Qingdao 266100, China 
 Tianjin Key Laboratory of Advanced Mechatronic Equipment Technology, School of Mechanical Engineering, Tiangong University, Tianjin 300387, China; [email protected] 
 Institute for Advanced Ocean Study, Ocean University of China, Qingdao 266100, China; [email protected] 
First page
520
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20771312
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2652980971
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.