Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A variety of yeast species have been considered ideal hosts for metabolic engineering to produce value-added chemicals, including the model organism Saccharomyces cerevisiae, as well as non-conventional yeasts including Yarrowia lipolytica, Kluyveromyces marxianus, and Pichia pastoris. However, the metabolic capacity of these microbes is not simply dictated or implied by genus or species alone. Within the same species, yeast strains can display distinct variations in their phenotypes and metabolism, which affect the performance of introduced pathways and the production of interesting compounds. Moreover, it is unclear how this metabolic potential corresponds to function upon rewiring these organisms. These reports thus point out a new consideration for successful metabolic engineering, specifically: what are the best strains to utilize and how does one achieve effective metabolic engineering? Understanding such questions will accelerate the host selection and optimization process for generating yeast cell factories. In this review, we survey recent advances in studying yeast strain variations and utilizing non-type strains in pathway production and metabolic engineering applications. Additionally, we highlight the importance of employing portable methods for metabolic rewiring to best access this metabolic diversity. Finally, we conclude by highlighting the importance of considering strain diversity in metabolic engineering applications.

Details

Title
Considering Strain Variation and Non-Type Strains for Yeast Metabolic Engineering Applications
Author
Xiunan Yi 1 ; Alper, Hal S 2   VIAFID ORCID Logo 

 Interdisciplinary Life Sciences, The University of Texas at Austin, Austin, TX 78712, USA; [email protected] 
 Interdisciplinary Life Sciences, The University of Texas at Austin, Austin, TX 78712, USA; [email protected]; McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712, USA 
First page
510
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20751729
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2652995818
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.