Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The prevention of surgical site infections is directly related to the minimization of surgical invasiveness, and is in line with the concept of minimally invasive spine therapy (MIST). In recent years, the incidence of postoperative infections has been increasing due to the increased use of spinal implant surgery in patients at high risk of infection, including the elderly and easily infected hosts, the limitations of poor bone marrow transfer of antibiotics, and the potential for contamination of surgical gloves and instruments. Thus, the development of antimicrobial implants in orthopedic and spinal surgery is becoming more and more popular, and implants with proven antimicrobial, safety, and osteoconductive properties (i.e., silver, iodine, antibiotics) in vitro, in vivo, and in clinical trials have become available for clinical use. We have developed silver-containing hydroxyapatite (Ag-HA)-coated implants to prevent post-operative infection, and increase bone fusion capacity, and have successfully commercialized antibacterial implants for hip prostheses and spinal interbody cages. This narrative review overviews the present status of available surface coating technologies and materials; describes how the antimicrobial, safety, and biocompatibility (osteoconductivity) of Ag-HA-coated implants have been demonstrated for commercialization; and reviews the clinical use of antimicrobial implants in orthopedic and spinal surgery, including Ag-HA-coated implants that we have developed.

Details

Title
Development of Silver-Containing Hydroxyapatite-Coated Antimicrobial Implants for Orthopaedic and Spinal Surgery
Author
Morimoto, Tadatsugu  VIAFID ORCID Logo  ; Hirata, Hirohito; Eto, Shuichi; Hashimoto, Akira  VIAFID ORCID Logo  ; Kii, Sakumo; Kobayashi, Takaomi  VIAFID ORCID Logo  ; Tsukamoto, Masatsugu  VIAFID ORCID Logo  ; Yoshihara, Tomohito; Toda, Yu; Mawatari, Masaaki
First page
519
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
1010660X
e-ISSN
16489144
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2653002642
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.