Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

One of the most frequent bone deformities in dogs is antebrachial growth deformity (AGD), which results from malunion of the distal growth plates. The objective of the present study was to re-align the limbs, which can correct the length mismatch and reset the coherence of the joint with the aid of a 3-D phantom model for surgical preplanning. A 14-month-old, intact female Golden Retriever with an angular deformity of the left radius and ulna was selected for the study. The diagnosis was confirmed by orthogonal radiographs. Moreover, computed tomography (CT) scans revealed a multiplane deformity with valgus, procurator, and external rotation of the left radius. The pre-surgical planning started with the quantification of the angular deformity, followed by a simulated virtual osteotomy, and concluded with an in vitro rehearsal surgery on 3-D printed phantom bone models. In the operating room, prefabricated patient-specific instrumentation (PSI) was attached at the planned site of the radial bone surface for a precise closing wedge osteotomy. Then two locking plates were fixed routinely. Post-operative radiographs showed accurate correction of the deformity as we had planned. At 12 weeks post-operatively, the follow-up surveys revealed improved gait, weight-bearing, and progression of bone healing. Our PSI design, based on novel surgical planning, was steady yet straightforward during the osteotomy. The osteotomy was performed without difficulty since the PSI that pre-determined the sites and angles let the surgeon perform the antebrachial malformation surgery. This method of operation reduces stress on the operator and helps to improve accuracy, repeatability, and surgery time.

Details

Title
Application of Patient-Specific Instrumentation in a Dog Model with Antebrachial Growth Deformity Using a 3-D Phantom Bone Model
Author
Lee, Hee-Ryung 1 ; Gareeballah Osman Adam 2   VIAFID ORCID Logo  ; Shang-Jin, Kim 3   VIAFID ORCID Logo 

 Hansarang Animal Hospital, Seoul 02880, Korea; [email protected] 
 Department of Veterinary Medicine and Surgery, College of Veterinary Medicine, Sudan University of Science and Technology, Khartoum P.O. Box 204, Sudan; [email protected]; R&D Division, HUVET Co., Ltd., Iksan 54531, Korea 
 College of Veterinary Medicine, Jeonbuk National University, Specialized Campus, Iksan 54596, Korea 
First page
157
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
23067381
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2653017065
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.