It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Correlation between gene expression profiles across multiple samples and the identification of inter-gene interactions is a critical technique for Co-expression networking. Due to the highly intensive processing of calculating the Pearson’s Correlation Coefficient, PCC, matrix, it often takes too much processing time to accomplish it. Therefore, in this work, Big Data techniques including MapReduce and Spark have been employed in a cloud environment to calculate the PCC matrix to find the dependencies between genes measured in high throughput microarray. A comparison between the running time of each phase in both of MapReduce and Spark approaches has been held. Both these techniques can dramatically speed up the computation allowing users to work with highly intensive processing. However, Spark has yielded a better performance than the MapReduce as it performs the processing in the main memory of the worker nodes and avoids the unnecessary I/O operations with the disks. Spark has yielded 80 times speed up for calculating the PCC of 22777 genes, however the MapReduce attained barely 8 times speed up.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer