Abstract

Information diffusion in the social network has been widely used in many fields today, from online marketing, e-government campaigns to predicting large social events. Some study focuses on how to discover a method to accelerate the parameter calculation for the information diffusion forecast in order to improve the efficiency of the information diffusion problem. The Betweenness Centrality is a significant indicator to identify the important people on social networks that should be aimed to maximize information diffusion. Thus, in this paper, we propose the RED-BET method to improve the information diffusion on social networks by a hybrid approach that allows to quickly determine the nodes having high Betweenness Centrality. Our main idea in the proposed method combines both the graph reduction and parallelization of the Betweenness Centrality calculation. Experimental results with the currently popular large datasets of SNAP and Animer have demonstrated that our proposed method improves the performance from 1.2 to 1.41 times compared to the TeexGraph toolkit, from 1.76 to 2.55 times than the NetworKit, and from 1.05 to 1.1 times in comparison with the bigGraph toolkit.

Details

Title
A RED-BET Method to Improve the Information Diffusion on Social Networks
Author
Duong, Son N; Du, Hanh P; Nguyen, Cuong N; Nguyen, Hoa N
Publication year
2021
Publication date
2021
Publisher
Science and Information (SAI) Organization Limited
ISSN
2158107X
e-ISSN
21565570
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2655115477
Copyright
© 2021. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.