It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Wireless services appearing in the next generation wireless standard i.e. 6G include Internet of Everything (IoE), Holographic communications, smart transportation and smart cities require exponential rise in the bandwidth in addition to other requirements. The current static spectrum allocation policy does not allow any new entrant to exploit already grid-locked Radio Frequency (RF) spectrum. Hence, quest for larger bandwidth can be fulfilled through other technologies. These include exploiting sub-Terahertz band, Visible Light Communication and Cognitive Radio scheme or exploiting of RF bands in opportunistic fashion. Cognitive Radio is one of those engines to exploit the RF spectrum in secondary style. Cognitive Radio can use artificial intelligence driven algorithms to complete the task. Several intelligent algorithms can be used for better forecasting of spectral holes. Convolutional Neural Network (CNN) is a Deep Learning algorithm that can be used to predict the presence of a spectral holes that can be opportunistically exploited for efficient utilization of RF spectrum in secondary fashion. This paper investigates the performance of CNN for metropolitan Karachi city of Pakistan so that the users can be provided with uninterrupted access to the network even under busy hours. Dataset for the proposed setup is collected for 1805 MHz frequency band through NI 2901 Universal Software Radio Peripheral (USRP) devices. The root mean square error (RMSE) for the predicted results using CNN appears to be 81.02 at epoch of 200 and mini-batch loss of 3281.8. Based on the predicted results, it was concluded that CNN can be useful for investigating the possible opportunistic usage of RF spectrum, however, further investigation is required with different datasets.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer