It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Abstract—A movie recommender system has been proven to be a convincing implement on carrying out comprehensive and complicated recommendation which helps users find appropriate movies conveniently. It follows a mechanism that a user can be accurately recommended movies based on other similar interests, e.g. collaborative filtering, and the movies themselves, e.g. content-based filtering. Therefore, the systems should come with predeter-mined information either by users or by movies. One interesting research question should be asked: “what if this information is missing or not manually manipulated?” The problem has not been addressed in the literature, especially for the 100K and 1M variations of the MovieLens datasets. This paper exploits the movie recommender system based on movies’ genres and actors/actresses themselves as the input tags or tag interpolation. We apply tag-based filtering and collaborative filtering that can effectively predict a list of movies that is similar to the movie that a user has been watched. Due to not depending on users’ profiles, our approach has eliminated the effect of the cold-start problem. The experiment results obtained on MovieLens datasets indicate that the proposed model may contribute ade-quate performance regarding efficiency and reliability, and thus provide better-personalized movie recommendations. A movie recommender system has been deployed to demonstrate our work. The collected datasets have been published on our Github repository to encourage further reproducibility and improvement.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer