Abstract

Abstract—A movie recommender system has been proven to be a convincing implement on carrying out comprehensive and complicated recommendation which helps users find appropriate movies conveniently. It follows a mechanism that a user can be accurately recommended movies based on other similar interests, e.g. collaborative filtering, and the movies themselves, e.g. content-based filtering. Therefore, the systems should come with predeter-mined information either by users or by movies. One interesting research question should be asked: “what if this information is missing or not manually manipulated?” The problem has not been addressed in the literature, especially for the 100K and 1M variations of the MovieLens datasets. This paper exploits the movie recommender system based on movies’ genres and actors/actresses themselves as the input tags or tag interpolation. We apply tag-based filtering and collaborative filtering that can effectively predict a list of movies that is similar to the movie that a user has been watched. Due to not depending on users’ profiles, our approach has eliminated the effect of the cold-start problem. The experiment results obtained on MovieLens datasets indicate that the proposed model may contribute ade-quate performance regarding efficiency and reliability, and thus provide better-personalized movie recommendations. A movie recommender system has been deployed to demonstrate our work. The collected datasets have been published on our Github repository to encourage further reproducibility and improvement.

Details

Title
Genres and Actors/Actresses as Interpolated Tags for Improving Movie Recommender Systems
Author
Duong-Trung, Nghia; Nguyen, Quynh Nhut; Le Ha, Dung Ngoc; Xuan Son Ha; Tan Tai Phan; Huynh, Hiep Xuan
Publication year
2020
Publication date
2020
Publisher
Science and Information (SAI) Organization Limited
ISSN
2158107X
e-ISSN
21565570
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2655156520
Copyright
© 2020. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.