It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
This paper proposes a new model in emergency control of load shedding based on the combination of dual Artificial Neural Network to implement the load shedding, restore the power system frequency and prevent the power system blackout. The first Artificial Neural Network (ANN1) quickly recognizes the state with or without load shedding when a short-circuit occurs in the electrical system. The second Artificial Neural Network (ANN2) identifies and controls the selection of load shedding strategies. These load shedding strategies include pre-designed rules which is built on the AHP algorithm to calculate the importance factor of the load units and select the priority of the load shedding. In case the ANN1 results in a load shedding, the load shedding control strategy is immediately implemented. Therefore, the decision making time is much shorter than the under frequency load shedding method. The effectiveness of the proposed method is tested on the IEEE 39-bus system which proves the effectiveness of this method.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer