Full Text

Turn on search term navigation

© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The transport sector is a significant contributor to global emissions. In Australia, it is the third largest source of greenhouse gases and is responsible for around 17% of emissions with passenger cars accounting for around half of all transport emissions. Governments at all levels have identified a need for a reduction in transport carbon emissions to meet their net zero emissions targets. This research aims to help decision makers estimate the carbon footprint of transport networks within their jurisdictions and evaluate the impacts of emission-reduction interventions, through development of a simulation-based low carbon mobility assessment model. The model was developed based on a framework that integrates multiple mobility components including individual travel preferences, traffic simulation, and an assessment interface to create a seamless tool for the end-user. The feasibility of the assessment model was demonstrated in a case study for a local city council in Melbourne. In one of many scenarios reported in this paper, the model showed that maintaining current levels of emissions would require a 20% reduction in vehicle trips by 2030, and a much larger reduction would be required to reduce the levels of greenhouse gas emissions and achieve desired emissions reduction targets. The paper concludes with recommendations and future directions to extend the model’s capabilities and applications.

Details

Title
Development and Evaluation of Simulation-Based Low Carbon Mobility Assessment Models
Author
Moffatt, Damian 1   VIAFID ORCID Logo  ; Hussein Dia 2   VIAFID ORCID Logo 

 Traffic Team (M80 Upgrade Project), CPB Contractors, Melbourne 3000, Australia; [email protected] 
 Department of Civil and Construction Engineering, Swinburne University of Technology, Hawthorn 3122, Australia 
First page
134
Publication year
2021
Publication date
2021
Publisher
MDPI AG
ISSN
26737590
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2656372394
Copyright
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.