It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Workflow scheduling is a key problem to be solved in the cloud to increases the quality of services. Few research works have been designed for performing workflow scheduling using different techniques. But, scheduling performance of existing techniques was not effective when considering a larger number of user tasks. Besides, the makespan of workflow scheduling was higher. In order to solve such limitations, Gene Optimized Deep Neural Round Robin Scheduling (GODNRRS) Technique is proposed. The designed GODNRRS Technique contains three layers namely input, hidden and output layer to efficiently perform workflow scheduling in the cloud. The GODNRRS Technique initially gets the number of user tasks as input in the input layer and forwards it to the hidden layer. After taking input, GODNRRS Technique initializes gene population with the assist of virtual machines in Amazon cloud server at the first hidden layer. Next, GODNRRS Technique determines fitness function for each virtual machine using their energy, memory, CPU time, bandwidth capacity at the second hidden layer. Afterward, GODNRRS Technique defines a weight for each virtual machine at the third hidden layer depends on their fitness function estimation. Consequently, GODNRRS Technique distributes the user tasks to optimal virtual machines according to their weight value at the fourth hidden layer in a cyclic manner. At last, the output layer renders the scheduled tasks result. Thus, GODNRRS Technique handles workflows in the cloud with improved scheduling efficiency and lower energy and makespan. The GODNRRS Technique conduct the experimental evaluation using metrics such as scheduling efficiency, makespan, and energy consumption with respect to a different number of user tasks from LIGO , Montage and cybershake real-time applications. The experimental result show that the GODNRRS Technique is able to increases the efficiency and also reduces the makespan of workflows scheduling in the cloud as compared to state-of-the-art works.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer