It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Traditionally, case-based reasoning (CBR) has been used as advanced technique for representing expert knowledge and reasoning. However, for stochastic business data such as customers’ behavior and users’ preferences, the knowledge cannot be extracted directly from data to build the cases in reasoning in making prediction. Artificial Neural Network that is known to be able to build model for predicting unprecedented business data is used together with Shannon Entropy and Information Gain (IG) to identify the key features. 8 attributes have been identified as key features from the 17 attributes which are based on the telemarketing data. These attributes are used to select the key features in building CBR. The weightage for the key features in the cases is obtained from the IG values. The mechanism of creating the cases based on the input from the ANN is discussed and the integration process between ANN and CBR is given. The process of integrating the ANN and CBR shows that both techniques complement each other in building a model in predicting a customer who would subscribe one of the promoted new banking service called “term deposit”.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer